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1. Introduction
Autoresonance (AR) is a generic nonlinear phase-locking phe-
nomenon in classical dynamics. It yields a robust approach to ex-
citation and control of nonlinear oscillatory systems by a continuous
self-adjustment of the system parameters to maintain the resonance
with chirped-frequency perturbations.
Ladder climbing (LC) is the quantum counterpart of the AR, charac-
terized by continuing successive two-level Landau-Zener transitions.
The AR and the LC were studied in various physical systems e.g.,
atoms, molecules, hydrodynamics, plasmas, Josephson circuits, etc.
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2. The chirped Anharmonic Oscillator
The simplest system that exhibit AR and LC is

H =
1
2

(
p2 + x2

)
+

1
3

λx3 +
1
4

βx4 + εx cos ϕd,

where ωd(t) = ϕ̇d = 1 + αt. The dimensionless (h̄ = 1) Schrödinger
equation in the energy basis of the undriven Hamiltonian reads

i
dcn

dt
= Encn + ε ∑

k
ck〈ψk|x̂|ψn〉 cos ϕd,

where the energy levels can be approximated as

En ≈ n +
1
2
+ γ(n2 + n) +

3
16

β− 11
72

λ2,

γ = 3
8 β− 5

12 λ2. One can define two dimensionless parameters [1]:

P1 =
ε√
2α

, P2 =
2γ√

α

measuring the strength of the drive and the nonlinearity. The classi-
cality limit is P2 � P1 + 1, due to overlap between successive tran-
sitions. In addition, we found that P2 is the dimensionless Planck
constant in the rotating frame [4].

3. Ladder Climbing
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Dynamics in energy basis and in phase-space (Wigner) for P2 = 8 [4].

4. Quantum to Classical Transition
The predicted thresholds for efficient phase-locking transition are

Pcr
1 = 0.8 (LC); Pcr

1 = 0.82/
√

P2 (AR).

A continuous quantum-classical transition was observed in Joseph-
son experiment by tuning the anharmonicity parameter (P2).
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5. Quantum Saturation at Low Temperatures
The width of the classical AR transition is ∆P1 ∼

√
T [2]. Due to the

similarity between the classical and the Wigner thermal distributions

in phase-space [4], we replace T by Teff =
h̄ω0
2kB

coth
(

h̄ω0
2kBT

)
.

Josephson junctions experiments [3]

6. Two-photon Resonance
We found that due to an isomorphism between the chirped one- and
two-photon resonances in the quantum regime, the passage through
half the linear resonance, ωd = 1

2 + αt, can be described similarly by
replacing ε→ 8

9 ε2λ [6].

0 10 20 30 40
0

1

2

3

4

5

6

E
N

E
R

G
Y

, E

TIME,  τ x

u

 

 

−5 0 5
−5

0

5

−1 0 1

0 10 20 30 40
0

1

2

3

4

5

6

E
N

E
R

G
Y

, E

TIME,  τ x

u

 

 

−5 0 5
−5

0

5

−1 0 1

(a) (b) τ= 25

(c) (d) τ= 25

One- and two-photon LC [6]
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7. Conclusions
1. The chirped anharmonic oscillator is a general framework

for studying, theoretically and experimentally, the quantum-
classical corresponding.

2. The engineering and control of a desired state of the oscilla-
tor via the LC and AR processes can be achieved by passage
through one- or two-photon resonances.

3. The quantum saturation of the threshold width, which can be
tuned by adjusting α, ultimately sets the resolution of a digital
detector based on autoresonance. Such a detector can be used
for the readout of a quantum bit.

4. The AR threshold width can serve as a noise thermometer at
low temperatures.
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